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15 Abstract  

Fisheries management operates under uncertainty, often driven by the dynamic nature of marine 

ecosystems and associated fisheries. Stock assessment models, which form the scientific basis of 

decision-making in fisheries management, strive for realistic representations of biological and 

fishery processes. However, data limitations and knowledge gaps necessitate simplifying 

assumptions for representing these complex bio-socioeconomic systems, which can increase 

uncertainty in the assessment process. Addressing time-varying fishery dynamics (i.e., due to 

regulatory changes or alterations in harvester behavior) is a common and particularly challenging 

problem for stock assessment models. Time-varying fishery selectivity is widely utilized to address 

changes in fishery dynamics but may not be adequate when regulatory changes substantially alter 

gear usage and associated assessment fleet structures. We explore the implications of accounting 

for, or ignoring, complex temporal changes in fleet structure and selectivity within stock 

assessment models by utilizing a recent and high-value case study, Alaska sablefish (Anoplopoma 

fimbria). Our findings demonstrate that the treatment of fleet structure (i.e., adding fleet 

complexity to account for gear transitions) did not greatly influence estimates of spawning biomass 

trajectories. However, associated selectivity assumptions had substantial impacts on sustainable 

harvest recommendations. We recommend that the treatment of fleet structure and associated 

selectivity assumptions should incorporate a priori considerations and subject-matter expertise of 

fishery and biological dynamics to ensure pragmatic and appropriate model parameterizations. 

Moreover, we advocate for multi-fleet models as a useful diagnostic tool for validating model 

estimates from single-fleet assessments when uncertainty in fleet dynamics exist. 
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41 Introduction  

Stock assessment models form the scientific basis for management advice for many species 

globally by providing estimates of current stock status and trends, which are then used to project 

sustainable harvest levels given management reference points. Contemporary assessment models 

commonly integrate a variety of data sources (i.e., fishery-dependent and fishery-independent) and 

types (i.e., age-and length-compositions, catch, and effort) into a single ‘integrated analysis’ 

(Maunder and Punt, 2013), which help inform important biological quantities (e.g., growth and 

natural mortality), recruitment processes, and the impact of fishery removals. These biological and 

fishery processes are often influenced by the dynamic nature of marine ecosystems and the 

fisheries that operate within them, resulting in the need for assessments to adequately incorporate 

temporal changes in modeled dynamics (Hilborn, 2003). However, the incorporation of temporal 

dynamics in stock assessment models are often hindered by considerations regarding model 

parsimony and data availability. Consequently, it may not be feasible to incorporate temporal 

variation in all modelled processes. 

Temporal changes in fishery dynamics are common and are influenced by technological 

developments, economic conditions, management regulations and ecosystem factors (Beverton 

and Holt, 1957; Sainsbury, 1984; Eigaard et al., 2014; Martell and Stewart, 2014). For instance, 

low catch, reduced economic efficiency, and failure to meet market demands for herring (Clupea 

harengus) fisheries in the United Kingdom facilitated the transition to purse seining and trawling 

as an alternative to drift-nets during the 1960s (Whitmarsh et al., 1995). Similarly, ecosystem 

considerations, such as wildlife conflicts, have prompted changes in fishery dynamics (e.g., gear 

modifications) as a result of socioeconomic and species conservation concerns. In particular, 

entanglement and depredation (i.e., predators damaging fish or fishing gear) events have resulted 
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in gear modifications (e.g., stronger net material, new gear types; Pol and Carr 2000; Tixier et al., 

2021). These changes in fishery dynamics due to alterations in gear usage can influence how 

fishery selectivity and fleet structure are represented in stock assessment models and need to be 

adequately addressed to enable robust estimates of sustainable harvest levels (Sinclair 1993; 

Goodyear 1996; Maunder 2002; Martell and Stewart 2014). 

In stock assessment models, fishery selectivity is one of the key components representing 

the impact of fishery removal processes and is commonly defined as the relative probability of 

capturing an individual as a function of its size, length, or age. Selectivity as defined in stock 

assessments is mediated by the combination of the following two processes: 1) Contact selection 

– the probability of capturing an individual if it comes into contact with fishing gear and 2) 

Availability – the probability that individuals occupy the same area and time during fishing 

activities (Sampson 2014). Parameterizing selectivity within stock assessment models is 

challenging because the true underlying functional form is often unknown (Punt et al., 2014), and 

mis-specifying the selectivity process can substantially impact estimates of management reference 

points and absolute abundance (Goodyear, 1996; Scott and Sampson, 2011). Selectivity can be 

approximated using a variety of functional (e.g., asymptotic or dome-shaped) or non-parametric 

(e.g., splines; Martell and Stewart 2014) forms but must be carefully considered given implications 

for the estimation of other model parameters (e.g., confounding with natural mortality; Thompson 

1994). Furthermore, selectivity often varies as a function of time (Sampson and Scott, 2012), 

which can be represented using time-blocks (i.e., selectivity is constant within a given block), 

while penalized maximum likelihood or state-space approaches can be used to represent smooth 

selectivity transitions (Nielsen and Berg, 2014). Ignoring time-varying processes in fishery 

selectivity can potentially result in consistent directional bias in model estimates (e.g., spawning 

5 



 

   

   

   

  

   

    

  

  

  

    

   

  

     

   

    

   

   

   

    

   

     

     

         

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

stock biomass), which has been demonstrated in various simulation studies (Linton and Bence, 

2011; Martell and Stewart, 2014; Szuwalski et al., 2018). However, selectivity is assumed to be 

time-invariant in many integrated assessment models, often due to data limitations, parameter 

estimability, model complexity, and considerations regarding over-fitting (Maunder and Punt, 

2013; Punt et al., 2014; Punt, 2023). Therefore, balancing the potential biases associated with 

ignoring temporal variation in fishery dynamics (i.e., selectivity) must be carefully considered 

against the aforementioned factors. Furthermore, careful consideration should be given to the 

potential for increased uncertainty in estimated parameters as sample sizes decrease with 

concomitant increases in modelled dimensions. 

Similar to the treatment of selectivity, assumptions about fleet structure within stock 

assessments can also have important implications for the reliability of estimated management 

quantities. Fleets within stock assessments can be aggregated or disaggregated by spatial units, 

sectors, or gear types, depending on characteristics of availability and removal processes. The 

treatment of fleet structure in integrated stock assessment models are well-studied in the context 

of representing spatial dynamics (Cope and Punt, 2011; Berger et al., 2012; Hurtado-Ferro et al., 

2014; Waterhouse et al., 2014), and parsimonious spatial fleet structure can be determined using 

multivariate regression trees to identify differences in catch-rates and age or length-compositions 

(Lennert-Cody et al., 2010, 2013). However, less guidance exists on the relative importance of 

modeling the full diversity of fishery gear types (e.g., how to determine the number of unique 

fishery fleets to model) or the consequences of combining data across gears to represent a single 

fleet within assessment models. Single-fleet models can be practical if all fishery gear types share 

similar patterns in harvest size or age (e.g., Nielsen et al., 2021). However, if the magnitude of 

catch and patterns in size or age of removals differ largely between gears but are modeled as a 
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single aggregated fleet, removal processes within the assessment can be misrepresented (e.g., the 

misallocation of mortality to certain age or length classes). Punt et al. (2014) demonstrated that 

ignoring fleet structure (i.e., aggregating data and model dimensions across multiple sectors) 

resulted in important differences in recommended harvest levels (650 tons) for a pink ling 

(Genypterus blacodes) stock assessment. 

Several benefits can be envisioned from disaggregating fleet structure of the fishery by 

gear type in an assessment, which include enhanced model diagnostics, better representations of 

age- or size-based fishery removal processes, and an improved reflection of local ecological 

knowledge. By disaggregating fishery fleets in the assessment, data conflicts across gear types can 

also be more clearly detected by inspecting residuals with an improved resolution (i.e., 

disaggregated by fishery fleet), which can facilitate model refinements through an enhanced 

understanding of explicit drivers of model instability (Punt et al., 2014). In a similar vein, fleet-

specific models can be useful tools for validating or identifying structural uncertainty in single-

fleet approaches if model results are inconsistent (Nielsen et al., 2021). By more accurately 

representing the actual gears used in the fishery, fleet disaggregation by gear type can also facilitate 

stakeholder acceptance and trust of model results because the assessment model better represents 

their empirical observations. With respect to catch projections, fleet-specific scenarios can aid in 

developing advice that can inform allocation decisions regarding fishing effort or recommended 

harvest levels and can facilitate the development of more robust management procedures 

(Bastardie et al., 2010a, 2010b; Baudron et al., 2010; Pascoe et al., 2010). Beyond the benefits 

provided for stock assessment models, investigations into fishery fleet structure can enhance the 

understanding of harvester behaviors (Andersen et al., 2012), aid in the estimation of fishery 

discards and subsequent measures for mitigating fishery discards (Fernández et al., 2010; Holmes 
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et al., 2011), and facilitate ecosystem-based fisheries management (Gascuel et al., 2012; Ulrich et 

al., 2012). 

In this study, we examine the treatment of fleet structure in the context of rapidly changing 

gear usage within the Alaska sablefish (Anoplopoma fimbria) fishery by exploring the implications 

of explicitly modeling, or ignoring, changes in fishery dynamics in the associated stock assessment 

model. Alaska sablefish are a deep-dwelling species that exhibit high movement rates and 

ontogenetic migration patterns. Juvenile sablefish typically migrate from nearshore to deeper 

offshore areas with adults typically inhabiting depths much deeper than 200m (Hanselman et al., 

2015; Goethel et al., 2021). The sablefish fishery is one of the most economically valuable 

groundfish fisheries in Alaska (e.g., providing $94 million in ex-vessel value in 2015; Fissel et al., 

2016; Hanselman et al., 2019), and transitioned from an open-access fishery to an Individual 

Fishing Quota (IFQ) system in 1995, which greatly increased fishery catch rates and reduced 

harvest of immature females by 17% and immature males by 11% (Sigler and Lunsford, 2001). 

Prior to 2017, the sablefish fishery was prosecuted primarily using hook-and-line gear across the 

Gulf of Alaska, with a small portion of the fleet using pot-gear (rigid pots) in the Bering Sea and 

Aleutian Islands region. However, increases in sperm whale (Physeter macrocephalus) 

depredation events across the central and eastern Gulf of Alaska resulted in substantial economic 

loss for harvesters (Peterson et al., 2014), which prompted interest in using pot-gear to mitigate 

depredation events. In 2017, pot-gear was legalized in the Gulf of Alaska for use in the directed 

fishery as an alternative to hook-and-line gear (Hanselman et al., 2018), and removals from the 

pot fishery have since increased substantially in the region (Fig. 1). Specifically, pot-gear 

represented about 4% of the average total harvest of sablefish from 2010 to 2017 but rapidly 

increased to 55% of the total harvest in 2021.These dramatic increases in the use of pot-gear have 
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been facilitated by the introduction of alternative pot-gear configurations in 2019 (e.g., collapsible 

“slinky” pots; Goethel et al., 2020; Sullivan et al., 2022), providing a more space efficient 

alternative to traditional rigid pots. In particular, slinky pots are collapsible and lightweight and 

allow for pot-gear fishing to be more accessible for smaller vessels limited by on-deck storage 

capabilities (Sullivan et al., 2022). However, the contact selection process of pot-gear within the 

sablefish fishery is not well established at present. For example, it remains unclear whether the 

entrance of pot-gear may constrain the entry of larger individuals. Moreover, the absence of 

regulations and data collected on the use of escape rings for pot gear in the federal sablefish fishery 

further compounds the difficulty in interpreting selectivity processes for the pot fleet. Nonetheless, 

limited investigations have demonstrated that the size-distributions of individuals captured using 

slinky pots are comparable to hook-and-line gear (Sullivan et al., 2022). Furthermore, both gear 

types appear to be deployed at overlapping depths (200-1100m). In particular, hook-and-line gear 

are deployed fairly uniformly across the 300-750m range, while pot-gear deployments are more 

concentrated towards depths of 400-550m (Goethel et al., 2023; Appendix 3E). 

Given these rapid changes in fleet structure, in part facilitated by the development of new 

gear configurations, there is a need to evaluate the implications of alternative treatments of fleet 

structure in the assessment model to reflect fishery dynamics more realistically. Currently, the 

Alaska sablefish assessment implicitly accounts for the rapid transition in pot-gear through a 

selectivity time-block within the single, aggregated ‘fixed gear’ (i.e., combined hook-and-line and 

pot) fleet, but potential biases from assuming an aggregated fixed-gear fleet has yet to be explored. 

Using the Alaska sablefish stock assessment model, we compare different parameterizations of 

fleet structure by fishery gear to evaluate the impact of alternative methods for representing rapid 

changes in fishery dynamics on model estimates and resulting management advice. Specifically, 
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179 we investigate the implications of: 1) the addition of a new pot fleet, 2) associated pot fleet  

selectivity parameterizations, and 3) the use of  either  an aggregated index (combining  hook-and-

line and pot-gear) or a fleet-specific index.  We seek to provide pragmatic guidance on the  

treatment of fleet structure when multiple gear types exist, especially when new fisheries or gear  

types emerge rapidly  with a limited time series of data to inform associated parameter estimation.   

181 

182 

183 

184 Methods  

In this study, the  2021 Federal sablefish operational  assessment model  (with minor  

modifications) was  evaluated against model variants  representing  alternate assumptions about  

fishery dynamics to understand the implications of  disaggregating modelled fishing fleet(s) based  

on gear type. Sablefish in Alaska federal waters  are assumed to represent a single reproductive  

population but with sex-specific growth and  selectivity processes  (Goethel  et al., 2021). 

Furthermore,  the assessment  uses an integrated statistical catch-at-age framework that  treats the  

hook-and-line  and pot-gears as a single fixed-gear fleet (i.e., catch along with age- and size-

composition data are aggregated), with a nominal fishery-dependent  catch-per-unit effort  (CPUE)  

index  (i.e., using only data from the  hook-and-line gear)  also fit (Fig.  2).  To  evaluate the treatment  

of  fleet structure on the  sablefish stock assessment, we used gear-disaggregated data to enable 

modeling the  hook-and-line and pot-gears as separate fishery fleets within the stock assessment  

model. A unique trawl fishery  fleet is  also  explicitly modelled  in  the operational assessment, 

however  the structure of  the trawl fleet was not altered in any model runs. The trawl fishery fleet 

composes about 20% of total removals on average  (Goethel  et al., 2022a). Following  good  

practices for using  fishery-dependent indices  in  stock assessments,  standardized fleet-specific  

indices based on fishery  catch-per-unit  effort (CPUE) data were also developed for model  runs in 
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this study (Hoyle et al., 2024), given the use of a nominal hook-and-line gear fishery-dependent 

index in the operational assessment. To explore alternative approaches to fleet specification, three 

axes of comparison were explored in this study, including: 

1) How the stock assessment model was parametrized to address fishery fleet structure (i.e., 

whether or not pot and hook-and-line fleets were aggregated). 

2)  How the fishery CPUE index accounted for fishery fleet structure (i.e., CPUE index that 

aggregates both hook-and-line and pot-gear, or disaggregating by gear and developing 

separate fishery-dependent indices). 

3) How pot-gear selectivity was parametrized. 

The sablefish case study is a useful example for fisheries that are experiencing rapid and 

abrupt shifts in fishery fleet structure and provides practical guidance and considerations for 

assessment model parameterizations. Here, we present a brief synopsis of the Alaska sablefish 

operational assessment model. We then identify how data from each gear type are analyzed 

(including the development of standardized CPUE indices by gear type), highlight key structural 

updates to the operational model necessary for the incorporation of a pot fishery fleet, and conclude 

by describing metrics used to compare performance of model parameterizations. Parameters across 

all model runs were estimated using penalized maximum likelihood estimation by minimizing an 

objective function, which consisted of likelihood components for catch (lognormal likelihood), 

abundance/biomass indices (lognormal likelihood), compositional data (multinomial likelihood), 

and priors and penalties (recruitment, natural mortality, fishing mortality). 

Operational Assessment 
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As described above, the operational assessment model is an age-and sex-structured integrated 

assessment model assuming a panmictic population and is developed in AD Model Builder 

(Fournier et al., 2012). The assessment model assumes mean recruitment where recruits enter into 

the population at age two, with annual recruitment deviations estimated (i.e., assuming a penalized 

likelihood and a recruitment standard deviation term that is fixed at 1.2). Cohorts by age are tracked 

over time following an exponential mortality model, where natural mortality is estimated with an 

informative prior. The general model structure can be found in Goethel et al. (2021) and is also 

provided in Appendix B. The operational assessment model integrates catch data, 

abundance/biomass indices, and compositional data (age and length) from both fishery-

independent and -dependent sources to estimate past demographic trends, quantities of interest 

(e.g., biomass levels), and biological reference points (e.g., Acceptable Biological Catch, 40% of 

unfished SSB; B40%). Population trends are primarily informed by the Alaska Longline Survey 

conducted by the National Marine Fisheries Service (NMFS). Age-compositional data are input as 

sex-aggregated, which is the approach taken in the 2021 federal sablefish operational assessment 

due to sample size limitations, while length-compositional data are input as sex-specific (Goethel 

et al., 2021). Additionally, age- and length-composition data for all fisheries and surveys follow 

multinomially distributed errors, with input sample sizes of 20 (i.e., the variance weighting 

parameter for the multinomial distribution). Model weights (applied to the aggregate dataset) are 

then determined using Francis-reweighting (Francis, 2011) and are used in the final model runs. 

Preliminary explorations indicated that model weights determined by Francis-reweighting were 

fairly insensitive to the assumed input sample sizes. 

Removals from the fishery are currently represented by two unique fishery fleets: 1) a trawl 

fleet comprised mostly of incidental catch and 2) a directed fixed-gear fleet that reflects aggregated 
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246 fishery dynamics of both the  hook-and-line  and pot-gears. Selectivity for the  directed  fixed-gear  

fleet assumes a logistic  function  where time-varying processes are represented by three  time-

blocks  (i.e., selectivity is  constant within a given  block) to account for regulatory changes (i.e., the  

shift from open access to an  IFQ fishery in 1995 and the  allowance of  pot-gear  regulatory change 

in the Gulf of Alaska  in  2017;  Goethel  et al., 2021). Note that the last time-block (2016+) accounts  

for both high recruitment events beginning in 2016 and the  pot-gear  regulatory shift in 2017. In 

the operational  stock assessment, the  directed  fixed-gear fleet is  fit to a  CPUE  index from 1990 to  

2020 specific only to the hook-and-line  fleet,  which  does not include  fishery-dependent CPUE  

data from the pot fleet.  However, the present study  replaces the nominal index used in the  

operational assessment with a gear-aggregated standardized biomass  index from 1995 to 2020 that  

combines both hook-and-line  and pot-gear  data, following the methods of  Cheng  et al., (2023a). 

This was done  to  facilitate comparisons among  alternative model structures and to better address  

the rapid expansion of  the pot-gear  fishery. The operational  assessment model updated with the  

gear-aggregated  standardized  biomass  index served as the basis for comparison (i.e., the null  

model in this study) across alternative model runs and will be referred to as model  Combined-

Logistic  hereafter.   

 
Disaggregating Data from the Fixed-Gear Fleet  

 To incorporate  a unique  pot fleet  and represent changes in sablefish fishery dynamics, we 

separated catch data and age- and length-composition data from the fixed-gear and pot fleets. As  

noted previously, pot fishing was permitted in the  Bering Sea and Aleutian  Islands  region prior to 

2017, while it was legalized in the Gulf of Alaska  during 2017. Consequently, fishery data for the  

pot fleet have been collected since 1991, albeit in limited quantities and spatial coverage.  

Disaggregating data sources from the fixed-gear fleet resulted in a pot-specific catch time-series 
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that ranged from 1991 to 2021, length-composition data that ranged from 1999 to 2021, and age-

composition data that ranged from 2004 to 2021 (Fig 2). Both age- and length-composition data 

from the pot fleet include more breaks in the time-series relative to hook-and-line gear due to 

comparatively lower fishing effort and proportional sampling, resulting in limited sample sizes 

(Fig. 2). For age-composition data, years with observations that had less than 20 samples from a 

given gear type were removed (2014 and 2015), while data from years with length-composition 

data that had less than 100 samples were removed (2014 and 2015). This was done to ensure that 

compositional data were generally representative of removal processes in the pot fishery and were 

not derived from a limited number of sampling events. Sample sizes from the pot fishery only 

began increasing after the regulatory shift (due to an increased effort in the pot fishery), such that 

the pot fishery fleet had relatively lower sample sizes for compositional data prior to 2017.  

Development of Fishery-Dependent Standardized Indices 

Fishery-dependent biomass indices were developed using Generalized Additive Models 

following the methods described in Cheng et al. (2023a). As noted, the nominal index used in the 

2021 operational sablefish assessment model was replaced by a gear-aggregated standardized 

biomass index. The overall interpretation of model results between model Combined-Logistic and 

the 2021 operational sablefish stock assessment remained similar. Relative to the nominal index 

(1990 to 2020), all standardized biomass indices developed in the current study omitted data prior 

to 1995 because of the shift towards an IFQ system, which resulted in large increases in catch 

efficiency (Sigler and Lunsford, 2001). Furthermore, all fishery-dependent standardized biomass 

indices explicitly incorporated spatial information (i.e., longitude and latitude) using tensor 

product smoothers. For the gear-aggregated biomass index, catch rate data from hook-and-line 
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(effort = catch-per-hook) and pot (effort = catch-per-pot) fleet were combined between 1995 to 

2020. Gear-disaggregated biomass indices were developed between 1995 to 2020 and 2003 to 

2020 for the hook-and-line and pot fishery, respectively. The shorter time-series for the pot-

specific index is attributed to removing years prior to 2003 that had low sample sizes and observer 

coverage. For the pot index, trends prior to 2017 are representative of the Bering Sea and Aleutian 

Islands region. Trends after 2017 are representative of both the Bering Sea and Aleutian Islands, 

and the Gulf of Alaska (i.e., consistent with the entire spatial extent of sablefish management). 

Model selection for index standardization model terms was conducted using 5-fold cross 

validation.  

Assessment Fleet Structure and Selectivity 

To accommodate the addition of a new pot fishery additional parameters had to be 

estimated, which include annual instantaneous fishing mortality rates (32 parameters: 1 parameter 

describing mean log fishing mortality and 31 independent annual deviations from the mean) for 

the pot fleet and associated sex-specific selectivity parameters (total number of estimated 

parameters depended on the specific functional form; ≤ 4 additional selectivity parameters). 

Although a variety of selectivity parameterizations for the pot fleet were initially explored (i.e., 

normal, exponential-logistic, double-logistic, double-normal), only two were retained based on 

explorations of model performance (including an invertible Hessian matrix, reasonable selectivity 

forms, and model performance). The first selectivity parametrization was the logistic function 

(model Pot-Logistic), which was time-invariant: 

−1 50%��= �1 + 𝑒𝑒−𝛿𝛿𝑠𝑠,𝑓𝑓�𝑎𝑎−𝑎𝑎𝑠𝑠,𝑓𝑓 𝑠𝑠𝑎𝑎,𝑠𝑠,𝑓𝑓 (Eq. 1) 
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315 where subscripts  a, s, and f  denote ages, sexes, and fleets. 𝛿𝛿  denotes the shape parameter of the  

logistic function and 𝑎𝑎50%  represents the age-at-50% vulnerability to fleet  f. Sex-specific 𝛿𝛿𝑠𝑠,𝑓𝑓  for  

the pot fleet were shared  with the hook-and-line  fleet during the 2016-2021 time-block. Parameter  

sharing was necessary  because sex-specific shape parameters for the pot fleet were estimated at  an  

upper bound due to model instability (resulted in knife-edged selectivity). The second selectivity 

parametrization  was the re-parameterized  gamma function (model  Pot-Gamma; Punt  et al., 1996), 

which was also time-invariant:  

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 
𝑠𝑠,𝑓𝑓�  

 �  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎  𝑠𝑠,𝑓𝑓 −𝑎𝑎𝑝𝑝   𝑠𝑠𝑎𝑎,𝑠𝑠,𝑓𝑓 = � 𝑚𝑚𝑎𝑎𝑚𝑚 � 𝑒𝑒 𝑝𝑝 (Eq. 2.1)

𝑎𝑎𝑠𝑠,𝑓𝑓  
 

𝑝𝑝 = 0.5 ∗ ��𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 2 2 𝑚𝑚𝑎𝑎𝑚𝑚
𝑠𝑠,𝑓𝑓 + 4𝛾𝛾𝑠𝑠,𝑓𝑓 − 𝑎𝑎𝑠𝑠,𝑓𝑓 � (Eq. 2.2)  

 
where 𝛾𝛾  is an estimated shape parameter that describes the steepness of the descending limb,  p  is 

a derived quantity representing the power parameter (not estimated), and 𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚  is an estimated  

parameter that describes  the age-at-maximum selection.   

 

Model Scenarios, Comparisons, and Performance  

A total of three model variants were  explored (Table 1):   

1)  An aggregated fixed-gear fleet structure assuming  logistic selectivity, fit to  a  gear-

aggregated  standardized  biomass  index that combines catch rate  and composition  

data from the hook-and-line and pot-gear (Combined-Logistic).  

2)  A  disaggregated fixed-gear  fleet structure  assuming  logistic  selectivity  for both the  

hook-and-line  and pot fleet, fit to  separate  standardized biomass  indices  and  

composition data  for hook-and-line  and pot-gear (Pot-Logistic). 
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3) A disaggregated fixed-gear fleet structure assuming logistic selectivity for the 

hook-and-line fleet and gamma selectivity for the pot fleet, fit to separate 

standardized biomass indices and composition data for the hook-and-line and pot-

gear (Pot-Gamma). 

For models that were fit to gear-disaggregated biomass indices, a catchability time-block was 

imposed for the pot index in 2017 to account for the regulatory shift pertaining to pot-gear. 

Incorporating the catchability time-block is considered best practice for accounting for changes in 

gear-use and regulations in stock assessment models (Wilberg et al., 2009). Preliminary 

explorations indicated that allowing for a catchability time-block allowed for improved model fits 

to the index. 

Given that stock assessments often utilize different data sources and data weights (Maunder 

and Piner, 2017), it is difficult to objectively identify tradeoffs in model parsimony and model fit 

using commonly employed model selection methods (i.e., information criterion methods). 

Consequently, stock assessments often use a variety of diagnostic tools and subject-matter 

expertise to evaluate model fit, parsimony, and realism for determining optimal model structures 

(Carvalho et al., 2021). Therefore, model performance was assessed by investigating common 

model diagnostics, and using subject-matter expertise to determine whether model estimates were 

reasonable given a priori knowledge of fishery and biological processes. Comparisons of 

important model outputs used for the basis of fisheries management decisions (i.e., biological 

reference points and projected harvest recommendations) were also explored to understand the 

implications of alternative treatments of fleet structure and selectivity. 

Model adequacy and performance was based upon: 1) convergence diagnostics, 2) 

parameter correlations, 3) model fits to data, 4) retrospective patterns, and 5) likelihood profiles. 
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357 Convergence diagnostics included inspection of  an invertible Hessian matrix and a maximum  

gradient component < 0.001 (Carvalho et al., 2021). We also examined the matrix of  parameter  

correlations for the presence of highly correlated parameter pairs  > 0.95, which could be indicative  

of unstable  and spurious  model solutions  (Carvalho  et al., 2021). One-step-ahead (OSA) residuals  

of compositional data for  hook-and-line  and pot fleets were inspected to evaluate potential  

misspecification of selectivity forms through the presence of systematic  patterns  (Thygesen  et al., 

2017; Trijoulet  et al., 2023). Furthermore, to compare the average magnitude of residuals for  a  

given composition type  across models, a metric of  mean absolute residuals  was computed.  Failure  

to account for time-varying processes  and misspecification of selectivity forms can also  manifest  

as retrospective patterns  and may  result in consistent inappropriate management advice  (Linton  

and Bence, 2011; Martell and Stewart, 2014). To assess the direction and magnitude of  

retrospective  inconsistencies  across models, we  conducted 3-year retrospective “peels” (i.e., data 

are sequentially  removed and models are re-estimated for each truncated dataset)  and computed  

Mohn’s  𝜌𝜌 for estimated spawning stock biomass (SSB) and fully-selected  fishing mortality  rates:  

𝑋𝑋
𝑏𝑏 = � 𝑌𝑌−𝑦𝑦,𝑝𝑝 − 𝑋𝑋𝑌𝑌−𝑦𝑦,ref  (Eq. 3.1) 
𝑝𝑝 � 𝑋𝑋 𝑌𝑌−𝑦𝑦,ref 

𝑛𝑛 
𝑏𝑏  (Eq. 3.2)  

𝜌𝜌  � 𝑝𝑝
 =  

  
𝑛𝑛 

𝑝𝑝=1 

 
where 𝑏𝑏𝑝𝑝  represents the relative  retrospective  inconsistency  for “peel” p, X is the metric of interest,  

Y is the final  year for a  given projection, y is the last  year of  an assessment with fewer  years of  

data used, and ref  is the reference peel (the most recent assessment  year). Mohn’s  𝜌𝜌  is then  

computed by taking the average relative  inconsistencies  across all peels.  Positive values of  Mohn’s  

𝜌𝜌  represent positive  inconsistencies  in the estimated quantity, and vice versa. Considering the time-

blocking model structures across all model variants, in addition to parameter sharing with the  
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hook-and-line 2016-2021 time-block for model Pot-Logistic, larger data peels were not conducted 

for comparability purposes. Nevertheless, the retrospective performance for model variants across 

these three peels can still provide insight into model consistency and short-term retrospective 

behavior. Finally, to investigate the presence of conflicts among data sources and model 

consistency (Lee et al., 2014), we constructed likelihood profiles for survey catchability (sablefish 

longline survey) and mean recruitment, both of which are key scaling parameters within the 

sablefish stock assessment. Likelihood profiles were constructed by incrementally increasing log 

survey catchability and log mean recruitment values across a fixed range. Large differences in 

negative log-likelihood values over small changes in parameter values are likely to be indicative 

of model misspecification, poorly parameterized model structures, or highly correlated parameter 

pairs (Punt et al., 2014; Carvalho et al., 2021). 

To understand the implications of selectivity, fleet structure, and biomass indices on stock 

status, we compared differences in estimates of fully-selected fishing mortality rates, predicted 

recruitment, SSB trends and projections, and the ratio of SSB with the B40% reference point across 

models. Population projections were conducted by assuming mean recruitment, used fishery 

selectivity estimates from the most recent time block, and assumed a fishing mortality rate equal 

to F40%. Here, F40% is the fishing mortality rate that reduces the spawning biomass-per-recruit 

to 40% of the average unfished spawning biomass-per-recruit. Additionally, the ratio of SSB and 

B40% is the basis of the harvest control rule (sloping control rule; Deroba and Bence 2008) used 

to manage sablefish in Alaska that determines long-term sustainable harvest levels. When the ratio 

of terminal year SSB and B40% is above 1, harvest levels are increased to maintain the stock at 

the B40% target. In contrast, when this ratio is below 1, harvest levels are reduced to allow the 

stock to rebuild towards the B40% target. For further details on the harvest control rule employed 
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400

405

410

415

420

for Alaska sablefish, please refer to  Appendix B. Finally, we used expert judgment (e.g., 

considering process research, fishery dynamics, and biological dynamics) to evaluate model  

performance  and to determine the relative plausibility of model results. Although expert judgment 

may be subjective in nature, it is commonly used to evaluate stock assessments  (Carvalho et al., 

2021). Nonetheless, we  attempt to provide transparent and sensible rationale when using expert  

judgment to describe relative model performance.   

401 

402 

403 

404 

406 Results   

Development of Fishery-Dependent Standardized Indices  

Comparisons of the gear-aggregated index (combined hook-and-line  and  pot-gear) and  

gear-disaggregated (fleet-specific)  biomass  indices demonstrated that the  year trend derived from  

the gear-aggregated index was most similar to that of the  hook-and-line index. The  gear-

aggregated index shows a small increase in the  year 2020, whereas the  hook-and-line  index 

stabilizes (Fig. 3). Year trends from the pot index demonstrated large increases occurring in 2015,  

coinciding with periods of large recruitment events, which are often first observed in the  Bering  

Sea and Aleutian Islands region, where the pot fishery operated prior to the regulatory  change in 

2017. Overall, year trends developed from the standardized indices do not seem implausible given 

a priori  knowledge of biological processes  for sablefish.   

 

Estimation of Selectivity  

 Estimated logistic selectivity  for females and males across models for the  hook-and-line  

fleet (2016-2021 time-block) indicated that model Pot-Logistic  was most similar to model  

Combined-Logistic  with respect to the slope of the  ascending limb and the initial age at maximum  
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selection (Fig. 4). Similarities in the estimated hook-and-line selectivity between Pot-Logistic and 

Combined-Logistic are likely a consequence of model Pot-Logistic sharing the shape parameter by 

sexes, and between the hook-and-line and pot fleet. In contrast, hook-and-line selectivity for Pot-

Gamma differed moderately relative to model Combined-Logistic. Specifically, younger fish 

appeared to be less vulnerable to fishing across sexes for model Pot-Gamma, and these differences 

were more pronounced for males (Fig. 4). Unsurprisingly, pot-specific selectivity for Pot-Logistic 

took on similar forms to selectivity estimates from the hook-and-line fleet, likely due to the sharing 

of the shape parameter by sex, which constrained the ascending limb of the logistic curve. When 

selectivity for the pot fleet was assumed to be dome-shaped following a gamma function (Pot-

Gamma), the age at maximum selection was similar for females and males, occurring at ages five 

and six respectively. Additionally, the initial age at maximum selection describing pot selectivity 

between models Pot-Gamma and Pot-Logistic corresponded closely with each other across both 

sexes (Fig. 4). However, estimated pot-specific selectivity for Pot-Gamma across sexes indicated 

extreme and possibly unrealistic dome-shaped selectivity, where older age classes were less 

vulnerable to removals, and the rate at which selectivity at age declined was much faster for 

females. 

Model Performance 

All model variants presented in Table 1 had invertible Hessian matrices with maximum 

gradient components that were < 0.001, suggesting that these models achieved convergence. 

Although, we detected several highly correlated parameter pairs (> 0.95), many of these correlated 

parameter pairs were also present in model Combined-Logistic and largely consisted of fishing 

mortality and recruitment deviations. Notable highly correlated parameters were those associated 
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with logistic selectivity (age at 50% selection and shape parameters) for males in the Alaska NMFS 

Longline Survey, which was only present in model Pot-Gamma. Retrospective analysis for SSB 

and fully-selected fishing mortality rates did not appear to suggest substantial retrospective 

inconsistencies (Fig. A1 and Fig. A2) (i.e., within cutoff values as defined by Hurtado-Ferro et al., 

2015) for any of the models explored. Additionally, likelihood profiles for longline survey 

catchability did not exhibit abnormal likelihood surfaces (i.e., not trapped in local minima) and all 

data sources were generally in agreement across model variants (Fig. A3). Similarly, likelihood 

profiles for mean recruitment were generally in agreement across Combined-Logistic, Pot-

Logistic, and Pot-Gamma models where the recruitment penalty (panel labelled as “Other” in Fig. 

A4) was the most influential. However, the likelihood response surface of mean recruitment for 

model Pot-Gamma was fairly uneven, which could be indicative of high parameter correlations 

(e.g., survey selectivity), and a poorly parametrized model.  

Evaluation of Model Fits 

Model fits to the gear-aggregated standardized biomass index for Combined-Logistic were 

acceptable and were fairly similar relative to models that incorporated a standardized hook-and-

line index (gear-disaggregated models; Fig. 3). However, fits to the pot biomass index were 

mediocre for Pot-Logistic and Pot-Gamma models, with Pot-Gamma exhibiting slightly improved 

fits to the index (Fig. 3).  Nonetheless, these mediocre fits to biomass indices are likely a result of 

the lower data weights assigned to the fishery-dependent index, compared to the fishery-

independent survey abundance indices to which the model was fit. 

Patterns in residuals for hook-and-line composition data were similar across model variants 

when compared to fits to the fixed-gear fleet for model Combined-Logistic and generally 
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demonstrated satisfactory model fits (Fig. A5 and Fig. A6). Satisfactory model fits to the hook-

and-line composition data suggest that logistic selectivity is a valid assumption for representing 

the disaggregated hook-and-line fishery fleet. In addition, the magnitude of absolute residuals 

across models were also similar. Model fits to pot composition data exhibited stronger systematic 

residual patterns for model Pot-Logistic relative to model Pot_Gamma (Fig. A5 and Fig. A6). In 

particular, runs of positive residuals were detected for ages 2-7 (i.e., smaller fish), which were 

accompanied by slight runs of negative residuals for older (i.e., larger) fish (Fig. 5). The presence 

of systematic patterns in residuals were generally less severe for model Pot-Gamma when 

compared to those from model Pot-Logistic (Fig. 5). Furthermore, mean absolute residuals were 

generally slightly larger (i.e., worse fit on average) across both age and length-composition data 

for the pot fishery for model Pot-Logistic relative to residuals from model Pot-Gamma (Fig. A5 

and Fig. A6). 

Estimation of Key Parameters and Management Quantities 

Trends in SSB estimates were similar across all models, although estimated trends diverged 

during the start of the time-series likely due to a lack of informative data during that time-period 

(Fig. 6). Terminal year SSB estimates differed slightly across models, where Combined-Logistic 

and Pot-Gamma estimated the largest (106.39) and smallest (99.63) SSB values, respectively (Fig. 

7). Similarly, estimates of B40% reference points were also slightly different across all models 

(Fig. 6 and Fig. 7). Despite these differences, the ratio of terminal SSB and the B40% reference 

point were almost identical (range: 0.87-0.90) across model variants, such that the estimated stock 

status across models were fairly similar (Fig. 7; upper right panel). Projections of SSB into the 

year 2036 also exhibited similar trajectories across all models, although we note differences in the 
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scale of these estimates; the scale to which SSB increased was the largest for model Combined-

Logistic and lowest for model Pot-Gamma (Fig. 6). In addition, projected declines following the 

peak SSB were less pronounced for model Pot-Gamma (Fig. 6), presumably due to the minimal 

selection of older ages as assumed by dome-shaped selectivity. Similar to the concordant nature 

of SSB estimates across models, estimates of predicted recruitment from 2016 to 2021 also 

exhibited comparable trends (Fig. 7). 

Estimates of both fully-selected (sum of fleet-specific fishing mortality rates) and fleet-

specific fishing mortality rates also generally followed consistent patterns across all model variants 

(Fig.7 and Fig. A7) but with differences in scale. Specifically, the scale of the fishing mortality 

rates for the pot fleet (also reflected in fully-selected fishing mortality rates) were much higher for 

model Pot-Gamma (Fig. A7), which is necessary in the presence of dome-shaped selectivity to 

adequately fit to catch observations. Acceptable Biological Catch (ABC) estimates were fairly 

different across all models. In particular, model Pot-Gamma estimated ABC values that were 

demonstrably higher compared to models Combined-Logistic and Pot-Logistic (Fig. 7). 

Considering that recruitment estimates were consistent across model variants, the higher ABC 

estimates resulting from models assuming dome-shaped selectivity (i.e. Pot-Gamma) is likely due 

to the lower modelled vulnerability of older age-classes to the pot fishery. Given that older, mature 

fish become essentially invulnerable to harvest once they survive the pot fishery process between 

ages 5 to 15 (i.e., given that hook-and-line harvest rates are comparatively lower; Figure 4), the 

model assumes a spawning refuge that enables higher removals. 
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511 Discussion  

As management systems continue to confront the dynamic nature of fisheries, it becomes 

imperative for stock assessment models to adapt accordingly. Our results demonstrate that 

disaggregating the fixed-gear fleet structure appeared to have minimal impacts on estimates of 

biomass levels in the case of Alaska sablefish. Given similarities in estimates of biomass levels 

between multi-fleet and fleet-aggregated models, we believe that disaggregating fleet structure can 

serve as a useful basis for validating single-fleet models and can provide valuable insight into fleet-

specific dynamics. However, our results illustrate that assuming dome-shaped selectivity may lead 

to overly optimistic harvest recommendations (Cadrin et al., 2016; Northeast Fisheries Science 

Center (NEFSC), 2019), especially when informed by a limited time-series of age-or length-

composition data as was the case for pot fleet in this context. In the following sections, we highlight 

the importance of considering a priori knowledge of fishery and biological dynamics and provide 

practical guidance for fisheries and associated assessment models experiencing changes in gear 

usage. 

Implications of Disaggregated Fleet Structure 

Given the complexity of stock assessment models, which can estimate hundreds of 

parameters, model parsimony is often an important consideration when selecting among models 

(Walters and Martell, 2002; Cotter et al., 2004). In comparison to model Combined-Logistic, 

model variants that assumed a disaggregated fishery fleet structure (Table 1) were more complex 

given the need to estimate new parameters (up to 30 additional parameters) for fleet-specific 

fishing mortality rates and fleet-and sex-specific selectivity processes. The increased complexity 

across model variants did not result in substantially improved model performance and provided 
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similar estimates (with exception of reference points for Pot-Gamma) relative to the fixed-gear 

fleet structure as assumed by model Combined-Logistic, suggesting that the added complexity may 

not be necessary, especially given a limited time series available for the pot fleet. However, the 

process of disaggregating fleet structure can better represent the reality as observed and understood 

by harvesters and provides additional insight into fleet-specific fishery dynamics. Similar to 

Nielsen et al. (2021), findings from our study also suggest that similarities between fleet-

disaggregated models and single-fleet models can be used as a tool to further validate model 

results, diagnose potential conflicts within a single fleet model, and improve confidence in the 

stock assessment process. 

The Alaska sablefish case study indicated that when extremely rapid changes in fleet 

composition occur, the most parsimonious approach may be to assume a single fleet for the fixed-

gear fleet, while allowing for a change in the selectivity pattern using a time-block, rather than 

disaggregating the fixed-gear fleet (e.g., Pot-Logistic and Pot-Gamma) and adding complexity. 

Compared to previous iterations (2020) of the operational sablefish assessment (without time-

block selectivity), the incorporation of time-blocked selectivity demonstrated improved model fits 

to compositional data for the fixed-gear fleet and improved retrospective patterns (Goethel et al., 

2020, 2021). Thus, assuming a single fleet will likely be sensible under rapid shifts in fleet 

composition, especially if contact selectivity and availability processes do not appear to be 

drastically different between the existing and emerging fleets. This is likely the case for hook-and-

line and pot-gears for Alaska sablefish, where the contact selectivity process of the two gears have 

been demonstrated to be comparable (Sullivan et al., 2022), although differences in the availability 

selection process of the two gears remains unclear.   
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Selectivity and Model Fits to Composition Data 

Upon the disaggregation of the fixed-gear fleet structure, fits to the hook-and-line 

composition data were not substantially degraded relative to the status-quo model. Furthermore, 

estimates of selectivity for the hook-and-line fleet were most similar between model Combined-

Logistic and Pot-Logistic, likely due to model Pot-Logistic sharing shape parameters by sexes, 

between the hook-and-line and pot fleet. With respect to fits to the pot composition data, model 

performance varied depending on the assumed selectivity function for the pot fishery. In general, 

model variants assuming dome-shaped selectivity for the pot fishery resulted in better agreement 

between predicted and observed composition data compared to logistic selectivity (Fig. 5). Despite 

improved statistical fit, extreme dome-shaped selectivity as estimated by a re-parametrized gamma 

function may not be representative of removal processes from the pot fishery in the present study. 

From our experience, dome-shaped selectivity represented by the gamma function (Punt et al., 

1996) is inflexible, relative to other dome-shaped selectivity forms and can result in unrealistically 

extreme declines in selectivity for older ages, especially with limited data available to inform the 

descending limb of the function.  

Consideration of the information provided by compositional data for informing selectivity 

is critical in the context of this Alaska sablefish case study, wherein the timeframe for the rapid 

emergence of the pot fleet in the Gulf of Alaska directly overlaps the observation of several 

anomalously large recruitment events (2014, 2016, 2017, 2019), resulting in a high abundance of 

younger individuals within the population. However, due to the limited time-series of composition 

data available for the pot fishery (Fig. A8 and Fig. A9), other flexible dome-shaped selectivity 

functions (double-normal, double-logistic, exponential-logistic) to represent the pot fishery were 

unable to achieve adequate model performance (i.e., non-invertible Hessian). Given the sex-
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structured nature of the assessment model, and the limited time-series for the pot fishery, additional 

partitions with respect to gear-types are likely not practical under the current data scenario for 

Alaska sablefish. In the case of Alaska sablefish where sex-specific dynamics are a key driver of 

population dynamics, incorporating sexually dimorphic growth is likely more important than 

accounting for gear-specific differences. However, for fisheries where sexually dimorphic growth 

is negligible, accounting for an additional gear dimension may prove to be a potentially crucial 

and estimable partition. 

Considering harvester targeting practices and market demands (Goethel et al., 2021), 

selectivity estimates based on previous tagging studies of sablefish (Maloney and Sigler, 2008; 

Jones and Cox, 2018), the highly migratory nature of sablefish (Hanselman et al., 2015; O’Boyle 

et al., 2016), and comparable length-compositions observed between the two gears during gear 

comparison studies (Sullivan et al., 2022), it is unlikely that the rate of selection for older 

individuals declines as rapidly as estimated for model Pot-Gamma (Fig. 4). Improved model fits 

as a result of assuming dome-shaped selectivity could potentially be attributed to high recruitment 

events during 2014, 2016, 2017, and 2019. These high recruitment events coincide with the 

regulatory shift in pot-gear in 2017, such that the pot composition data reflect a dominance of 

younger fish, potentially obscuring the signal of older individuals being removed from the 

population (Goethel et al., 2021). Furthermore, high recruitment events tend to first be observed 

in the Bering Sea and Aleutian Islands, where the pot fishery primarily operated prior to 2017. 

Thus, it is plausible that pot-gear selects for younger individuals through availability selection 

(Sampson, 2014), resulting in dome-shaped selectihvity (Sampson and Scott, 2012). However, the 

steep descending limb as estimated in Pot-Gamma is unlikely as discussed above. In particular, 

individuals move from nearshore to offshore regions (depths > 200m) as they mature, and the 
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depth ranges (>400m) that the pot fishery primarily operates in suggests that selection of older 

individuals should be higher than is estimated by model Pot-Gamma. However, given the extreme 

demographic state of the population, the removal of these old individuals are likely inundated by 

the abundance of young individuals. These dynamics are likely further accentuated by 

hypothesized density dependent effects, where younger individuals have appeared to inhabit 

deeper depths following these recent high recruitment events (Goethel et al., 2021). Although 

model Pot-Logistic appeared slightly mis-specified when fit to the composition data for pot-gear 

(Fig. 4), other model diagnostics (i.e., likelihood profiles, parameter correlation) did not suggest a 

major cause for concern. Thus, given the biological and fishery dynamics associated with Alaska 

sablefish, model variants assuming logistic selectivity might be more appropriate for the purpose 

of representing removals from the Alaska sablefish pot fishery, especially with the limited time 

series of data for the emerging pot fleet currently available. More complex selectivity 

parameterizations (e.g., double-normal, double-logistic) could potentially reconcile conflicts 

between model fits and a priori knowledge, but often failed to achieve convergence as previously 

noted. Incorporation of priors to investigate the degree of doming may also reconcile such 

conflicts, but were not explored as they were beyond the scope of the current study. Consequently, 

our results suggest that the optimal selectivity form to represent a new emerging fishery should 

likely depend on a priori knowledge of data quality and representativeness of the functional form 

(Privitera-Johnson et al., 2022; Punt, 2023). 

Treatment of Biomass Indices 

Overall, the use of aggregated and disaggregated biomass indices did not demonstrate 

apparent differences in model performance and key model results were also similar (with exception 
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of reference points). Model fits for both the gear-aggregated and standardized hook-and-line index 

were generally similar and appropriate (Fig. 3), but were mediocre for the standardized pot index 

(Pot-Logistic and Pot-Gamma). These lack of differences in model performance and results are 

likely attributed to the lower relative weights applied to the fishery-dependent indices. 

Nevertheless, using gear-aggregated standardized biomass indices can leverage additional 

spatiotemporal information available from different gears, which can potentially provide more 

informative and robust trends in stock status (Cheng et al., 2023a). While methods incorporating 

spatiotemporal information other than tensor product smooths are available (e.g., Gaussian 

Markov Random Fields; Rue and Tjelmeland, 2002; Thorson and Barnett, 2017; Thorson, 2019), 

they were not further explored, given that it was beyond the scope of the study. Furthermore, some 

studies have found that different spatiotemporal interpolation methods (i.e., tensor products 

compared to Gaussian Markov Random Fields) can demonstrate similar model performance 

(Brodie et al., 2020; Stock et al., 2020). Thus, alternative methods for accounting for 

spatiotemporal correlations in the index standardization process are unlikely to have greatly 

impacted the interpretation of results in this study. For assessments assuming a disaggregated fleet 

structure, the use of fleet-specific indhhhhices can improve transparency in the assessment process 

and better reflects empirical observations from harvesters, which can help facilitate agreeable 

management outcomes when changes are necessitated (Goethel et al., 2019; Barbeaux et al., 

2020).  

Estimation of Key Management Quantities and Population Status 

Trends in SSB and the ratio of terminal year SSB and B40% were fairly similar across all 

models explored in this study, irrespective of the treatment of fleet structure. However, differences 
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in selectivity assumptions for models represented with a disaggregated fixed-gear fleet resulted in 

substantially different recommended harvest levels. In particular, model Pot-Gamma estimated 

ABC values that were much higher, despite similar estimates of population status across models. 

Such differences are likely ascribed to the reduced vulnerability of older mature age classes to the 

pot fishery given the strong dome-shape estimated for selectivity. SSB projections into the year 

2036 exhibited less pronounced declines for model Pot-Gamma (Fig. 6), which are also 

presumably attributed to the older cohorts recruiting to ages unavailable to the pot fleet, resulting 

in higher levels of SSB maintained in the long-term. Despite improved statistical fit to the pot 

composition data when assuming dome-shaped selectivity, harvest levels were sensitive to the 

assumed choice of selectivity forms and may suggest the need to rely on the knowledge of 

biological and fishery processes, especially during these initial periods of change in fleet structure. 

Similar to findings from Bohaboy et al. (2022), the implementation of dome-shaped selectivity 

when multiple fisheries exists can result in obscure interactions between selectivity and harvest 

recommendations. Findings from our study further underscore the sensitivity of management 

references points to selectivity assumptions (Scott and Sampson, 2011; Butterworth et al., 2014), 

and the value of subject matter expertise in stock assessment (Rosenberg and Restrepo, 1994). 

Furthermore, we recommend that fleet structure and selectivity are carefully explored in tandem, 

especially when there are rapid shifts in fleet structure. 

Caveats and Future Work 

The need to directly account for multi-dimensional processes (e.g., gear, space, time, sex) 

within stock assessments is well recognized (Wang et al., 2005; Goethel et al., 2011). Given that 

sexually dimorphic growth is a key driver in sablefish population dynamics (Goethel et al., 2021), 
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incorporating both sex and gear partitions limited the estimation of sex- and fleet-specific 

selectivity parameters for model Pot-Logistic, and sharing of sex-specific selectivity parameters 

for the pot fleet was necessary to achieve adequate model performance. Although such 

parameterizations are imperfect, we believe that parameter sharing with the hook-and-line 2016-

2021 time-block is reasonable considering that a majority of the removals from the pot fishery 

began in 2017. Sharing of parameters is not uncommon, and is similar to the “Robin Hood” 

approach described by Punt et al. (2011), but parameter values in the current study are assumed to 

be the same among fleets instead of estimated with penalties or priors. Furthermore, the re-

parametrized gamma function used in model Pot-Gamma can often be inflexible (restricted to 2 

parameters) when compared to other domed-shaped selectivity forms. The limited time-series of 

compositional data available for the pot gear further impeded the ability to estimate more flexible 

domed-shape parameterizations due to the increased number of parameters to be estimated from 

extremely limited data sample sizes. Moreover, the limited compositional data combined with the 

rapidly changing population demographics (i.e., an extremely small and young population in recent 

years) resulted in unrealistically extreme doming of the selectivity when using the gamma 

function, as discussed above. 

In addition to the limited time-series of available compositional data, other components 

incorporated within the assessment model could have impacted the estimation of selectivity. For 

instance, age-composition data were input as sex-aggregated, while length-compositions are input 

as sex-specific, but it remains unclear how the treatment of compositional data might adversely 

impact the estimation of selectivity processes. Ageing error and selectivity are also known to 

interact with each other, which can impact estimates of cohort size (both under and overestimation; 

Bradford, 1991; Punt et al., 2008), inaccurate estimates of population status, and biases in 
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management reference points (Henríquez et al., 2016). However, given that an ageing-error matrix 

is directly incorporated in the assessment model to account for uncertainty in the ageing process, 

ageing error is unlikely to have substantially impacted the estimation of selectivity in the context 

of this study. 

Model configurations in the present study represent the pot fishery as a single fleet despite 

the use of multiple pot types (rigid pots and “slinky pots”). However, considering the recent 

introduction of “slinky pots” in 2019, there are likely insufficient data available to further partition 

out an additional gear dimension. Furthermore, historical fishing effort from the pot fishery was 

primarily concentrated in the Bering Sea and Aleutian Islands , which later expanded into the Gulf 

of Alaska in 2017, facilitated by the pot regulatory change. Such changes in the spatial distribution 

of fishing effort can potentially impact spatial harvest patterns and availability of cohorts, which 

can be further accentuated by the ontogenetic movement patterns Alaska sablefish exhibit. For 

instance, O’Boyle et al. (2016) showed that age-specific movements, along with spatially 

heterogenous fishing mortality rates can result in dome-shaped selectivity, despite contact 

selection following patterns of asymptotic selectivity. Similarly, Sampson and Scott (2011, 2012) 

demonstrated that when stocks are not well-mixed and experience spatially uneven fishing 

mortality patterns, dome-shaped selectivity can also manifest. Thus, the aforementioned factors 

further complicates the estimation of fishery selectivity processes when assuming a single area 

assessment model, as is the case in the current study. 

Allowing for additional flexibility in fishery selectivity processes (i.e., continuous time-

variation rather than discrete changes) and the use of spatial stock assessment models (spatially-

explicit or -implicit) (Cope and Punt, 2011; Stewart and Martell, 2014; Waterhouse et al., 2014; 

O’Boyle et al., 2016; Lee et al., 2017) may help better characterize these removal processes. 
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However, continuous time-varying selectivity approaches were not further explored given 

difficulties in achieving model convergence. Lastly, a moderate proportion of individuals in the 

plus-group were detected in pot age-composition data relative to younger age-bins (Fig. 5), which 

may suggest the need to expand the number of individuals modelled within the assessment model, 

but were not explored in this study. 

As data from the pot-gear fishery increases over time, future work should explore 

alternative models that allow for more flexible selectivity functional forms and/or accounts for 

time-varying selectivity processes in the Alaska sablefish stock assessment. In particular, multi-

dimensional autoregressive processes in selectivity (i.e., age, year, or cohort effects) could be 

fruitful to explore (Cheng et al., 2023b; Xu et al., 2020, 2019). Future studies could also conduct 

simulation analyses to evaluate the implications of ignoring fleet structure, assuming a single fleet 

with continuous or time-blocked time-varying selectivity, or disaggregating fleet structure when a 

new fleet emerges. 

General Recommendations on Fleet Disaggregation 

Data availability are a key determinant in constraining the dimensions that an assessment 

model can represent (Chen et al., 2003; Hodgdon et al., 2022). Although modelling selectivity as 

a time-varying process has been identified as best practice (Martell and Stewart, 2014), the 

dimensions represented within an assessment model should also be based upon considerations 

regarding data quantity and quality (Privitera-Johnson et al., 2022; Punt 2023), model parsimony, 

and a priori understanding of fishery and stock dynamics (Rosenberg and Restrepo, 1994; Francis, 

2011; Hulson and Hanselman, 2014; Carvalho et al., 2021). Thus, decisions with respect to model 

structure and assumptions should not be based purely on statistical fit. The involvement of both 
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stakeholders and harvesters can also be fruitful in the assessment process, which can help fill in 

knowledge gaps through the inclusion of local knowledge, facilitate information sharing and 

provide insight for identifying pragmatic stock assessment parameterizations (Duplisea, 2018; 

Goethel et al., 2022; Johannes et al., 2008; Neis et al., 1999; Peterson et al., 2014). In addition, 

alternative sensible parameterizations of selectivity through parameter sharing, penalties, or 

aggregating selectivities among modelled partitions (e.g., sex-invariant selectivity) to achieve 

adequate model performance would be fruitful to explore in scenarios where limited time-series 

exist (Punt et al., 2011). When multiple fishery fleets are present, we recommend disaggregating 

fleet structure to compare against single fleet parameterizations if these model structures are 

supported by the data available. Doing so facilitates comparisons between single- and multi-fleet 

assessment models, enables analysts to better understand model behavior, aids in model validation, 

and improves tactical and strategic decision-making. Furthermore, analyzing fleet structure can 

enable improved fishery monitoring procedures, understanding of spatial and fleet-specific harvest 

patterns (Eigaard et al., 2011), and the development of fleet-based catch, effort, and discard 

management procedures (Ulrich et al., 2002; Bastardie et al., 2010b, 2010a; Holmes et al., 2011; 

Nielsen et al., 2021). Finally, we recommend using simulation analyses and management strategy 

evaluations to identify pragmatic model parameterizations that are paired with management 

procedures robust to differential fishery process and dynamic changes to fleet structures. Although 

the incorporation of an additional gear dimension does not appear to be an immediate concern for 

Alaska sablefish, adequately emulating fleet-specific dynamics might be more impactful for 

assessment models with fewer modelled dimensions (i.e., negligible sex-specific dynamics), and 

will likely be of more merit in cases where fleet structure changes slowly. 
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Tables  

Table 1. Description of model configurations  employed. Model  Combined-Logistic  represents  

the null model in the current study and closely emulates the structure of the operational 2021 

federal Alaska sablefish  stock assessment (Goethel  et al., 2021). Model  Pot-Logistic  assumes a 

disaggregated  fishery fleet structure and  estimates logistic selectivity  for the pot fishery fleet.  

Model  Pot-Gamma  also  assumes a disaggregated  fishery fleet structure but estimates gamma 

selectivity for the pot fishery fleet.    

 

 Model Fleet 
structure   

 Selectivity 
 functional 

 form 

 Selectivity 
 blocks 

 Biomass 
 indices 

 Biomass index 
 blocks 

Parameters 
 estimated 

Combined-
 Logistic 

 Pot-Logistic 

 Pot-Gamma 

 

Single fixed-
 gear fleet  

Disaggregated  
 fleet structure 

Disaggregated  
 fleet structure 

  Logistic 
 selectivity 

 

Hook-and-
 line Fleet: 

 Logistic 
 selectivity 

 
 
Pot Fleet: 

 Logistic 
 selectivity 

Hook-and-
  line Fleet: 

 Logistic 
 selectivity 

 
Pot Fleet: 

 Gamma 
 selectivity 

 3 time-blocks from 
1960-1994, 1995-

 2015, and 2016-
 2021 

Hook-and-line  
 Fleet: 3 time-blocks 

from 1960-1994,  
1995-2015, and 
2016-2021 (𝛿𝛿𝑠𝑠,𝑓𝑓  

 shared with the pot  
fleet)  
 
Pot Fleet: Time-
invariant (𝛿𝛿𝑠𝑠  shared  
with the 2016-2021  

 hook-and-line time-
 block)  

Hook-and-line  
 Fleet: 3 time-blocks 

from 1960-1994,  
1995-2015, and 

 2016-2021 
 
Pot Fleet: Time-
invariant  

Aggregated  
  biomass index 

 (combines hook-
 and-line and 
  pot-gear data) 
 

Hook-and-line  
index and pot  

 index are fit 
 independently 

Hook-and-line  
index and pot  

 index are fit 
 independently 

 2 time-blocks from 
1995-2015, 2016-

 2021 

Hook-and-line  
Fleet: 2 time-
blocks from 1995-

 2015, 2016-2021 
 

 Pot Fleet: 2 time-
 blocks from 2003-

 2016, 2017-2021 
 

Hook-and-line  
Fleet: 2 time-
blocks from 1995-

 2015, 2016-2021 
 

 Pot Fleet: 2 time-
blocks from 2003-

 2016, 2017-2021 
 

 251 

 287 

 289 

 

 
  
   

1081 

1082 

1083 

1084 

1085 

1086 

1087 

1088 

1089 
1090 
1091 
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 Figures  

 

 

 

 
  

 

 

 

 

1092 

1093 

1094 
1095 
1096 Figure 1.  Total catch (tons) from 1990 to 2021 aggregated across  sablefish management regions  

resulting from the hook-and-line, pot, and trawl fleets. Note that the fishery  shifted from an 

open-access fishery to an  Individual  Fishing Quota (IFQ) program in 1995, and allowed pot-gear  

fishing in the Gulf of  Alaska starting in 2017.  
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Figure 2. Presence and absence of all data types and sources that models variants are fit to in this 

study. Note that model Combined-Logistic, which closely emulates the 2021 operational 

assessment model is fit to a single aggregate standardized CPUE index that combines hook-and-

line and pot-gear data. In contrast, models Pot-Gamma and Pot-Logistic are fit to two separate 

CPUE indices that are gear-specific. Presence of particular data types and sources are indicated 

by points; absences here are not assigned any points.  

46 



  

 
 

 
 

       

 

     

       

  

  

  

1111

1112

1113

1114

1115

1116

1117

1109 
1110 

Figure 3. Time series of fishery-dependent indices incorporated (grey points and lines) for each 

model variant. Grey shading represents 95% confidence intervals and blue lines represent the 

time series to which a given model variant is fit to. Solid colored lines represent predicted values 

for a given index and assessment model variant. 
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Figure 4. Estimated sex-specific selectivity curves for the hook-and-line and pot fisheries across 

explored model variants. Selectivities are scaled to have a maximum of 1.0. Selectivity for the 

hook-and-line fishery is estimated in three separate time-blocks (1960-1994, 1995-2015, 2016-

2021), and pot selectivity is assumed to be time-invariant. The estimated selectivities for the 

fixed-gear fleet from model Combined-Logistic is plotted in all panels, given that it is informed 

by both hook-and-line and pot composition data. 
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1128 
1129 
1130 

1131 
1132 
1133 

1134 Figure 5.  Average fits to compositional data resulting for the  two  pot fishery model variants  

explored in the present study. Orange bars represent the average observed proportion a nd blue  

lines represent the average model predicted  proportion of a given age or length bin across time. 

Columns represent age-compositions, length-compositions for females, and length-compositions  

for males (left to right)  from the pot fishery  and rows indicate model variants (see Table 1 for  

descriptions  of model variants). Note that age-composition data are input as sex-aggregated,  

while length-compositions are input as sex-specific.  
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1149 

1150 Figure 6.  Estimated spawning stock biomass (SSB; solid lines) with associated asymptotic 95%  

confidence intervals  (shading) and B40% reference points for 2021 (dashed lines) across model  

variants. Solid lines overlapping with green shading represent SSB projections for  years 2022 –  

2036 (15-year projections). Panel A shows SSB trends across the  entire time-series. Panel B 

shows SSB trends from 2018 to 2036 to better highlight differences in projected SSB across  

model variants.  
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1164 Figure 7.  Time series of  estimates for fully-selected fishing mortality (sum of fleet-specific 

fishing mortality  rates), predicted recruitment, and stock status (SSB / B40%)  in the upper  row. 

Point estimates and associated asymptotic 95% confidence intervals for Acceptable Biological  

Catch (ABC), B40%, and terminal  year  (2021)  SSB  in the bottom row. ABC and B40% are  

determined internally within the stock assessment and represent the maximum ABC and 40% of  

unfished biomass, respectively.  
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 Appendix A:  Supplementary Figures  

  
  

 

 

 

 

  

1185 

1186 
1187 

1188 Figure A1.  Retrospective patterns from 3-year “peels” of spawning stock biomass (SSB) for  

sablefish across model variants. Corresponding M ohn’s  𝜌𝜌  values from retrospective analysis are 

shown in each panel. Different  colors represent estimates for individual “peels” and the estimates  

from the terminal  year assessment (2021) are displayed in green.  

1189 

1190 

1191 

1192 

52 



  

  
  

 

 

 

 

  

1195

1196

1197

1198

1199

1193 
1194 

Figure A2.  Retrospective patterns from 3-year “peels” of fully-selected fishing  mortality rates  

for sablefish across model variants. Corresponding Mohn’s  𝜌𝜌  values from retrospective analysis  

are shown in each panel.  Different colors represent estimates for individual “peels” and the 

estimates from the  terminal  year  assessment (2021) are displayed in green.   
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Figure A3.  Likelihood profiles for the  NMFS longline survey catchability. Catchability values  

were profiled across values of 0  – 3 i n increments  of 0.1. Negative log-likelihood (nLL) values  

for a given data type were scaled by their minimum value to ensure nLL values minimized at 0.  

Model variants are displayed in different colors, solid lines represent the likelihood profile, and 

dashed lines represent the maximum likelihood estimate of survey catchability  for a  given model.  
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Figure A4.  Likelihood profiles for the mean recruitment. Recruitment values were profiled 

across values of 1.5 – 4 i n increments of 0.1. Negative log-likelihood (nLL) values for  a  given 

data type were scaled by  their minimum value to ensure nLL values minimized at 0. Model 

variants are displayed in different  colors, solid lines represent the likelihood profile, and dashed 

lines represent the maximum likelihood estimate  of mean recruitment for  a given model.  
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Figure A5. One-step ahead residuals across hook-and-line (HAL) and pot age-composition data 

(columns) across time (x-axis) and ages (y-axis) for all models evaluated in the study. Red colors 

are positive residuals and blue colors denote negative residuals. Mean absolute residuals (MAR) 

presented in the upper left corner of each panel represent the average absolute residuals for a 

given composition type and assessment model. Larger MAR values are indicative of a worse fit 

for a given assessment model to a composition type on average. 
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Figure A6.  One-step ahead residuals across hook-and-line  (HAL)  and pot length-composition 

data (columns) across time (x-axis) and lengths (y-axis) for  all models evaluated in the study. 

Red colors are positive residuals and blue colors denote negative  residuals. Mean absolute 

residual (MAR) values presented in the upper left  corner  of each panel.  Larger MAR values are 

indicative of a worse fit for a  given assessment model to a composition type on average.  
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1238 Figure A7.  Time-series  of fishing mortality rates  from 1960-2021 across  model variants. The  

panel denoted as “Fully-selected  F” represents the sum of the fishing mortality rates  across  all  

fleets. Panels denoted by  “Hook-and-line  F”, “Pot F”, and  “Trawl F” represent estimated fishing  

mortality rates  for the hook-and-line (or fixed-gear fleet for model  Combined-Logistic),  pot, and 

trawl fishery,  respectively. Note that the scale of the y-axis differs across panels.   
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1253 Figure A8.  Distribution of ages sampled by hook-and-line  gear and pot-gear.  Colored labels  

denote the number of individuals aged for a  given gear type.   1254 
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1259 Figure A9. Distribution of  lengths  sampled by hook-and-line  gear and pot-gear  across sexes. 

Colored labels denote the number of individuals aged for a  given gear type.   1260 
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1262 Appendix B: Model D escription of  the 2021 Federal Sablefish Stock   

Assessment Model  
 
General Model Description  
 
 The 2021 federal sablefish stock assessment is fit using an age-and sex-structured 

integrated model assuming a homogenous population in AD Model Builder. Hereafter, several  

equations will be presented, and definitions of symbols and variables can be found in Table 1 in 

this  appendix. Initial abundance-at-age was determined by the following equation:   

𝑅𝑅⎧ 1, 𝑎𝑎 = 𝑎𝑎
 0

⎪ 𝐻𝐻𝐻𝐻𝐻𝐻
𝑒𝑒�𝜇𝜇 +𝜓𝜓 �𝑒𝑒−(𝑎𝑎−𝑎𝑎0)𝑅𝑅 𝑦𝑦 �𝑀𝑀+𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻  ∗ 𝑠𝑠 1960−1995 ℎ𝑖𝑖𝑠𝑠𝑖𝑖 𝑚𝑚,𝑠𝑠 �, 𝑎𝑎0 < 𝑎𝑎 < 𝑎𝑎𝑁𝑁1,𝑎𝑎,𝑠𝑠 =  + (Eq. B1)

⎨ 𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻𝐻𝐻1960−1995 𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻𝐻𝐻𝐻 −1 

⎪𝑒𝑒(𝜇𝜇 )𝑒𝑒−(𝑎𝑎+−1)�𝑀𝑀+𝐹𝐹   ∗  𝑠𝑠  ℎ𝑖𝑖𝑠𝑠𝑖𝑖 𝑚𝑚−1,𝑠𝑠 � �1 − 𝑒𝑒−�𝑀𝑀+𝐹𝐹ℎ𝑖𝑖𝑠𝑠𝑖𝑖  ∗ 1960−1995 𝑠𝑠𝑅𝑅  𝑚𝑚−1,𝑠𝑠 �� 𝑎𝑎 = 𝑎𝑎
⎩ + 

where  recruitment deviations are estimated for each cohort, and is decremented by  natural  

mortality and historical fishing mortality  rates resulting from the  hook-and-line  fishery up until  

the start of the assessment model (1960) (Goethel  et al., 2021) . The assessment assumes that a  

stock-recruitment relationship  is not estimable  (i.e., recruitment is independent of spawning  

stock biomass):  

𝑒𝑒(𝜇𝜇𝑅𝑅+𝜓𝜓𝑦𝑦), 𝑦𝑦 ≠ 2021𝑅𝑅𝑦𝑦 = � ( ) ( )
𝑒𝑒(𝜇𝜇𝑅𝑅) , 𝜓𝜓𝑦𝑦 ~ ln 0, 𝜎𝜎𝑅𝑅 Eq. B2  

, 𝑦𝑦 = 2021 

where  recruitment deviates are  constrained by  a penalized likelihood following a lognormal  

distribution, with 𝜎𝜎𝑅𝑅  fixed at 1.2. Numbers-at-age starting in 1960 are determined by:  

𝑅𝑅𝑦𝑦 𝑎𝑎 = 2 
𝑁𝑁𝑦𝑦,𝑎𝑎,𝑠𝑠 = �𝑁𝑁 −𝑍𝑍𝑦𝑦,𝑚𝑚,𝑠𝑠 𝑦𝑦−1,𝑎𝑎−1𝑒𝑒 2 < 𝑎𝑎 < 31 (Eq. B3.1)  

𝑁𝑁 𝑒𝑒−𝑍𝑍𝑦𝑦−1,𝑚𝑚−1 + 𝑁𝑁 𝑒𝑒−𝑍𝑍𝑦𝑦−1,𝑚𝑚 𝑦𝑦−1,𝑎𝑎−1 𝑦𝑦−1,𝑎𝑎 𝑎𝑎 = 31 
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1282 𝑍𝑍𝑦𝑦,𝑎𝑎,𝑠𝑠 = ∑𝑓𝑓 𝐹𝐹𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 + 𝑀𝑀 (Eq. B3.2) 

where numbers-at-age in Eq. B3.1 are decremented by total mortality  (sum of fishing a nd natural  

mortality; Eq.  B3.2) and follows a forward projection method.  Natural mortality in the  

assessment is estimated with an informative prior (mean = 0.1, CV  = 10%).  Catch data in the 

assessment is predicted using Baranov’s catch equation:  

𝐹𝐹
𝐶𝐶 = 𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 
𝑦𝑦, 𝑁𝑁 −𝑍𝑍𝑦𝑦,𝑚𝑚,𝑠𝑠 𝑎𝑎,𝑠𝑠,𝑓𝑓 𝑍𝑍 𝑦𝑦,𝑎𝑎,𝑠𝑠(1 − 𝑒𝑒 )𝑤𝑤𝑎𝑎,𝑠𝑠 (Eq. B4.1) 

𝑦𝑦,𝑎𝑎,𝑠𝑠 

 
𝐹𝐹 = 𝑒𝑒�𝜇𝜇𝑓𝑓+𝜌𝜌𝑦𝑦,𝑓𝑓� 𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 ∗ 𝑠𝑠𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 (Eq. B4.2)  

 
where Eq. B4.1 is  Baranov’s catch equation and describes predicted catch as the ratio of fishing  

mortality and total mortality multiplied by the number of individuals that experienced mortality  

in year  y. Eq. B4.2 imposes  a separability  assumption, where annual fishing mortality rates  are  

multiplied by the selectivity of fleet f, to estimate age-specific vulnerabilities. Catch data for a  

given fleet were  assumed to follow a lognormal distribution. Predicted catch-at-age and catch-at-

length was  given by:   

−1𝑎𝑎=31   

𝑃𝑃𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 = 𝑁𝑁𝑦𝑦,𝑎𝑎,𝑠𝑠𝑠𝑠𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 � � 𝑁𝑁𝑦𝑦,𝑎𝑎,𝑠𝑠𝑠𝑠𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 � 𝐀𝐀𝒔𝒔 (Eq. B5.1)  
𝑎𝑎=2 

−1𝑎𝑎=31   

𝑃𝑃 𝒍𝒍
𝑦𝑦, 𝑠𝑠 𝑓𝑓 = 𝑁𝑁  
𝑎𝑎, ,  𝑦𝑦,𝑎𝑎,𝑠𝑠𝑠𝑠𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 � � 𝑁𝑁𝑦𝑦,𝑎𝑎,𝑠𝑠𝑠𝑠𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 � 𝐀𝐀𝒔𝒔 (Eq. B5.2)  

𝑎𝑎=2 

where catch-at-age is multiplied by  an ageing  error  matrix  (Fig.  B1)  to account for uncertainty in 

the ageing process (Eq. B5.1). For predicted catch-at-length, proportions  were determined 

following Eq. B5.2 and was multiplied by an age-to-length transition matrix, to allow for the  

age-structured model to fit to sex-structured length-composition data. Age-and length-

composition for all fisheries were  assumed to follow multinomially distributed errors, with  

assumed input sample sizes of 20. Given inherent  correlations in composition data, input sample  
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1305

1310

1315

1320

1325

sizes were smaller than observed sample sizes to reflect reduced information content resulting  

from such correlations  (Pennington and Volstad, 1994; Francis, 2011). Integrated stock 

assessments are fit a variety of data sources and  are sensitive to input data weights  (Maunder and 

Piner, 2017). Furthermore, multinomial distributions do not allow for correlations that are  

commonly observed in age-or length-composition data  (Francis, 2017). To  reconcile these 

complexities, we applied Francis-reweighting to  all explored m odel variants  (Francis, 2011). 

Data weights for compositional data were determined following  a 2-stage  approach using method 

TA1.8 and weighting assumption T3.4 (multiplicative weighting)  as described in Francis, 2011. 

The 2-stage reweighting  approach  was conducted  until data weights and key  management  

quantities appeared converged (Francis, 2017).  Preliminary  explorations  indicated that the  

relative weights  (weights are applied on  an aggregate dataset)  determined by  Francis-reweighting 

and  resulting  model estimates  were  fairly insensitive to  the assumed  input sample sizes.  

Abundance/biomass  indices were also assumed to follow a lognormal distribution, a nd the  

predicted index for a given  year  was  given by:  

𝑎𝑎=31 𝑠𝑠 

𝐼𝐼� 𝑦𝑦,𝑓𝑓 = 𝑞𝑞𝑦𝑦,𝑓𝑓 � � 𝑁𝑁𝑦𝑦,𝑎𝑎,𝑠𝑠  𝑠𝑠𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓𝑤𝑤𝑎𝑎,𝑠𝑠  (Eq. B6) 
𝑎𝑎=2 1 

For indices of abundance that are represented as numbers, weight-at-age for sex  s  was not  

included in Eq. B6. Fishery-dependent indices in the current study  assumed a coefficient of  

variation of 10%, as is done in the 2021 federal sablefish stock assessment.   

Several data sources  are fit within the assessment model.  Here, we only describe those  

that represent an important component of the assessment, but readers should refer to (Goethel  et  

al., 2021)  Specifically, the assessment is fit to age-and length-composition data from both the  

fixed-gear fishery (hook-and-line and pot)  and the  annual  sablefish longline survey, both of  

which assume logistic selectivity:  
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50% −1 

𝑠𝑠𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 = �1 + 𝑒𝑒−𝛿𝛿𝑦𝑦,𝑠𝑠,𝑓𝑓�𝑎𝑎−𝑎𝑎𝑦𝑦,𝑠𝑠,𝑓𝑓  �� (Eq. B7)  
 
where the fixed-gear  fishery assumes three time-blocks in both selectivity and catchability  

(1960-1994, 1995-2015, 2016-2020) to account for various shifts in management structure  and 

large recruitment events. The assessment is also fit to  catch data and length-composition data  

resulting from the trawl fishery  following  a re-parameterized  gamma function:  

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 
𝑦𝑦,𝑠𝑠,𝑓𝑓

𝑎𝑎 �  
 � 𝑚𝑚𝑚𝑚𝑚𝑚

 𝑝𝑝   𝑎𝑎𝑦𝑦,𝑠𝑠,𝑓𝑓 −𝑎𝑎

𝑠𝑠 � �    
𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 =  𝑒𝑒 𝑝𝑝 (Eq. B8.1)

𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 
𝑦𝑦,𝑠𝑠,𝑓𝑓  

 

𝑝𝑝 = 0.5 ∗ ��𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚2 + 4𝛾𝛾2 𝑚𝑚𝑎𝑎𝑚𝑚 
𝑦𝑦,𝑠𝑠,𝑓𝑓 𝑦𝑦,𝑠𝑠,𝑓𝑓 − 𝑎𝑎𝑦𝑦,𝑠𝑠,𝑓𝑓 � (Eq. B8.2)  

 
where  𝛾𝛾  (shape parameter) is shared between sexes, to achieve stable model results.  Finally, the  

model is also fit to a  biomass  index and length-composition from a biennial bottom trawl survey, 

which assumes a one parameter power function  for selectivity:  

𝑠𝑠 = 𝑎𝑎𝜙𝜙𝑓𝑓,𝑠𝑠 𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 (Eq. B9)  

 All selectivities that are  included in the model are scaled to have  a maximum of 1.   

 
Tier 3 North Pacific Fishery  Management Council (NPFMC) Harvest Control Rule  
 
 Alaska sablefish  are managed under the Tier 3 NPFMC harvest control rule (sloping  

control rule), which utilizes proxy reference points for maximum sustainable  yield (MSY). 

Specifically, these references points are B40%, which represents the long-term average biomass  

that would be expected under mean  recruitment conditions and fishing mortality rates occurring  

at  F40%. These  reference points are determined from spawning per recruit ratios which represent  

the ratio between two lifetime egg productions (fished cohort divided by unfished cohort), and 

ranges between 0  and 1.  The resulting  catch  advice is:  
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𝑆𝑆𝑆𝑆𝐵𝐵

⎪ 
40% 𝑦𝑦+1⎧  

 𝐹𝐹  if > 1 
𝐵𝐵40% 

⎪ 𝑆𝑆𝑆𝑆𝐵𝐵
𝐹𝐹40% � 𝑦𝑦+1    � − 𝜆𝜆 𝐹𝐹ABC = 𝐵𝐵40% 𝑆𝑆𝑆𝑆𝐵𝐵𝑦𝑦+1 (Eq. B10) 

⎨ if < 1 
⎪ 

1 − 𝜆𝜆 𝐵𝐵40% 
⎪ 𝑆𝑆𝑆𝑆𝐵𝐵

0 if 𝑦𝑦+1 < 𝜆𝜆 ⎩ 𝐵𝐵40% 

where the total  𝑆𝑆𝑆𝑆𝐵𝐵𝑦𝑦+1 is the projected spawning stock biomass in the  year following the  

terminal year of the assessment, while assuming mean recruitment and mortality rates from the  

terminal year of the assessment (fishing and natural mortality).  𝜆𝜆 is defined as the fraction of 

𝑆𝑆𝑆𝑆𝐵𝐵𝑦𝑦+1  below which fishing does not occur, and is defined as 0.05 here.  
𝐵𝐵40% 
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1356 Table 1.  Symbols and descriptions of variables for equations used for the  sablefish stock 

assessment model in this study.   1357 

1358 

Symbol Description 
𝑁𝑁𝑦𝑦,𝑎𝑎,𝑠𝑠 Abundance for year y (1960-2021), age 𝑎𝑎 (2, 3, 4 … 31+) and sex s 

(male or female) 
𝑎𝑎0, 𝑎𝑎+ Age at recruitment (age 2) and age of plus-group (age 31) 

respectively 
𝑅𝑅𝑦𝑦 Recruitment for year y 
𝜇𝜇𝑅𝑅 Mean log recruitment 
𝜓𝜓𝑦𝑦 Annual recruitment deviation 
𝜎𝜎𝑅𝑅 Recruitment variability fixed at 1.2 
𝑀𝑀 Time-invariant natural mortality 
𝜇𝜇𝑓𝑓 Mean log fishing mortality rate for fleet f (hook-and-line, trawl, or 

pot) 
𝜌𝜌𝑦𝑦,𝑓𝑓 Annual fishing mortality deviation for year and fleet f 
𝐻𝐻𝐻𝐻𝐻𝐻 Historical fishing mortality from the hook-and-line fishery 𝐹𝐹ℎ𝑖𝑖𝑠𝑠𝑖𝑖 

𝐹𝐹𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 Instantaneous fishing mortality rate for year y, age a, sex s, and fleet 
f 

𝑠𝑠𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 Proportion selected for year y (estimated as time-blocks), age a, sex 
s, and fleet f 

𝑎𝑎50% Midpoint parameter for a logistic function describing age at 50% 
selection 

𝛿𝛿 Shape parameter describing the rate of increase for a logistic 
function 

𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 Parameter for a re-parameterized gamma function describing age at 
maximum selection 

𝛾𝛾 Shape parameter for a re-parameterized gamma function describing 
rate of decrease for the descending limb 

𝑝𝑝 Derived power parameter for a reparametrized gamma function 

𝜙𝜙 Parameter that determines the slope of the power function 

𝐶𝐶𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 Predicted catch (tons) for year y, age a, sex s, and fleet f 

𝑍𝑍𝑦𝑦,𝑎𝑎,𝑠𝑠 Total instantaneous mortality for year y, age a, sex s 

𝑤𝑤𝑎𝑎,𝑠𝑠 Average weight at age a and sex s 

𝑃𝑃𝑦𝑦,𝑎𝑎,𝑠𝑠,𝑓𝑓 , 𝑃𝑃𝑦𝑦,𝑙𝑙,𝑠𝑠,𝑓𝑓 Predicted proportions at age a or length l (41, 43, 45 … 99) 
respectively, for year y, sex, s, and fleet f 

𝒍𝒍 𝐀𝐀𝐬𝐬, 𝐀𝐀𝐬𝐬 Ageing error matrix and age-to-length transition matrix for sex s, 
respectively 
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1363 Figure B1.  Ageing e rror  matrix used in the 2021 operational sablefish assessment model. True  

ages are denoted on the x-axis, while reader  assigned ages are denoted on the y-axis. Colors  

represent the probability  of assignment to a given age-class.   
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